The GT2860RS "Disco Potato" model 739548-1 and 739548-5 turbocharger is basically a GT28R turbo with a 62 trim compressor 0.60 A/R and a 76 trim turbine 0.86 A/R. The Disco Potato was voted top 20 New Products at SEMA 2003.
This turbocharger is an upgrade turbocharger for the GT2554R model number 471171-3 and GT2560R model 466541-1 turbine housing flanges are outline interchangeable.
This turbo has a flow capacity of about 250 - 360HP and works well for engines between 1.8L - 3.0L. Gives good spool and would be comparable to the HKS GT2530. But have the fastest spool of the turbochargers in it's category.
The Dual Ball Bearing GT2860RS turbo assembly have a T25 style turbine inlet (NOTE: without studs). It also has an internally wastegated style T25 turbine housing with actuator bracket and actuator fitted from the factory.
Now before I go any further you need to know that there are actually 3 different versions of the GT2860R turbocharger (ONLY R at the ending). This turbo is the RS version named GT2860RS, and somewhat a hybrid with a bigger compressor and of these there are 2 different RS versions 739548-1 and 739548-5. Both these are called “The Disco Potato” and the only difference between these RS versions are basically the turbine housing. So I will cover both "Disco Potato" turbos here.
It's a bit confusing yes, however don't forget to read the story behind the Disco Potato turbo and how it came to be further down after I give you the specifications.
Model: 739548-1 and 739548-5
CHRA: 446179-66
Bearing: Dual Ball bearing
Cooling: Oil & Water cooled bearings
Compressor
Inducer: 47.20 mm
Exducer: 60.1 mm
Trim: 62
A/R 0.60
Turbine Model 739548-1
Wheel: 53.90 mm
Trim: 76
A/R: 0.64
Turbine Housing PN 430609-230
Turbine Model 739548-5
Wheel: 53.90 mm
Trim: 76
A/R: 0.86
Turbine Housing PN 430609-231
Wastegated
Turbine Flange: T25 without studs
Turbine outlet: T25 flange 5-bolt pattern
Looking at the compressor map for the GT2860RS turbochargers will show you that it have a very broad range. Even if you have a low boost of 1bar it will flow 350+ hp if your engine is capable.
Here we see the two different turbine housings at work. And the bigger 0.86 A/R will give you more flow and in effect even more top end power. However it should be recomended to use the bigger one also if you have a big 3 liter engine. The ball bearings will give you exellent spool even if you don't use the smller 0.64 A/R turbine housing.
The GT2860RS use the Standard T25 oil drain flange.
Oil inlet 0.4375IN - 24 Thread for 6.35 Tube Inverted flare connection PER SEA J512 Oil inlet
Oil outlet 2 x M8x1.25 13.5 oil outlet
Water connections thread M14x1.50
The Turbine wheel is cast from "Inconel" material suited for extreme applications. The Turbine housing have the traditional T25 5-bolt flange.
This is the story behind the Disco Potato Turbocharger
The story starts with Dan Passe who, at the time, was a Nissan PR genius with a penchant for bending rules. He conveniently "lost" the paperwork for a 1.8-liter Sentra which Nissan Design International had modified for the L.A. Auto Show. The car quietly landed in the hands of Nissan engineers Steve Mitchell and Mike Kojima.
Meanwhile, a few miles away at Garrett, turbo engineer Jay Kavanagh wanted to boost his Miata. Having full access to the newest Garrett technology, he concocted a physically small turbo with a ball-bearing center section and internal aerodynamics 20 years more modern than the T3/T4 standard the aftermarket is used to.
A few cubicles from Kavanagh, Rob Cadle, a good friend of Mitchell and Kojima, realized Kavanagh's Miata turbo would be perfect for the SR20DET the Nissan boys were planning for the Sentra. He brewed up a turbo, stuffed it under his shirt, and went out the back door.
The Sentra was painted a unique combination of psychedelic, color-shifting brownish paint and was thus dubbed the Disco Potato.
Jim Wolf Technology built a very mild SR20 for the Sentra, making it functionally equivalent to a stock Japanese-spec SR20DET. The turbo was installed, and amazing things started happening. The car's power was impressive, 280 hp at the wheels, but not earth-shattering. The driving experience however, was. Throttle response was excellent, turbo lag virtually non-existent, and the tire-shredding power was easily modulated. The turbo spooled up early, making so much torque, that the best quarter-mile time (13.7 at 104.5 mph) was achieved launching in second gear.
Mitchell brought the Disco Potato to the Ultimate Street Car Challenge in 2001, and placed an impressive fourth overall. The rest of the time, the car was stashed away in Nissan USA's service garage and used strategically as an attitude adjustment tool. Whenever Nissan or Garret executives needed an injection of gasoline in their veins, they were offered the keys. They would inevitably come back grinning from ear to ear and breathing heavily, eager to bring horsepower to the masses.
During one such outing, which included a 1,000-mile road trip as well as a track day at Thunderhill Raceway, the fwd Disco Potato outran every car at the track and then blasted down the freeway at 140 mph. Several Garrett executives also experienced the Potato. They were so impressed, they decided to produce the turbo, double the engineering staff in the aftermarket department, and start applying this modern Garrett technology to a whole range of aftermarket turbos. End of story.
Did you like the story? I sure did. A lot of people find the Disco Potato turbocharger as a very fun turbo to drive. And here is a little video of a Honda Civic B16 fitted with a GT2860RS turbocharger. I might add that this 1.6 liter engine drives and spools the GT28RS Disco Potato quite well.
Video text:
This car now has a third setup. First setup was a b16a2 N/A, second - b16a2 turbo, but burst slevees and now I will gave him a new life with the next engine, he has forged pistons and connecting rods. I'm using a turbocharger Garrett GT28RS (Disco Potato), what generating power 328,3HP and 323,3Nm with the 1bar of boost (14,5PSI).
You might want to fit this turbocharger to you're own car perhaps. Well sometimes there are a few problems, especially when using the existing turbo manifold.
Because most standard cars don't come with a turbo this big from the factory, you start to run into clearance problems.
However these problems can be solved quite easily with an simple turbocharger flang fitted as a spacer between you're standard turbo manifold and the turbo itself. Like on this Saab turbo. There was no need for grinding or further modification to make the GT28RS turbocharger fit. We can see the extra turbo flange with seals in the picture.

This turbo has a flow capacity of about 250 - 360HP and works well for engines between 1.8L - 3.0L. Gives good spool and would be comparable to the HKS GT2530. But have the fastest spool of the turbochargers in it's category.

Now before I go any further you need to know that there are actually 3 different versions of the GT2860R turbocharger (ONLY R at the ending). This turbo is the RS version named GT2860RS, and somewhat a hybrid with a bigger compressor and of these there are 2 different RS versions 739548-1 and 739548-5. Both these are called “The Disco Potato” and the only difference between these RS versions are basically the turbine housing. So I will cover both "Disco Potato" turbos here.
It's a bit confusing yes, however don't forget to read the story behind the Disco Potato turbo and how it came to be further down after I give you the specifications.
Model: 739548-1 and 739548-5
CHRA: 446179-66
Bearing: Dual Ball bearing
Cooling: Oil & Water cooled bearings
Compressor
Inducer: 47.20 mm
Exducer: 60.1 mm
Trim: 62
A/R 0.60
Turbine Model 739548-1
Wheel: 53.90 mm
Trim: 76

Turbine Housing PN 430609-230
Turbine Model 739548-5
Wheel: 53.90 mm
Trim: 76
A/R: 0.86
Turbine Housing PN 430609-231
Wastegated
Turbine Flange: T25 without studs
Turbine outlet: T25 flange 5-bolt pattern
Looking at the compressor map for the GT2860RS turbochargers will show you that it have a very broad range. Even if you have a low boost of 1bar it will flow 350+ hp if your engine is capable.
Here we see the two different turbine housings at work. And the bigger 0.86 A/R will give you more flow and in effect even more top end power. However it should be recomended to use the bigger one also if you have a big 3 liter engine. The ball bearings will give you exellent spool even if you don't use the smller 0.64 A/R turbine housing.
The measurements and turbo flange drawings can be viewed in fullscreen.

Oil inlet 0.4375IN - 24 Thread for 6.35 Tube Inverted flare connection PER SEA J512 Oil inlet
Oil outlet 2 x M8x1.25 13.5 oil outlet
Water connections thread M14x1.50
The Turbine wheel is cast from "Inconel" material suited for extreme applications. The Turbine housing have the traditional T25 5-bolt flange.

The story starts with Dan Passe who, at the time, was a Nissan PR genius with a penchant for bending rules. He conveniently "lost" the paperwork for a 1.8-liter Sentra which Nissan Design International had modified for the L.A. Auto Show. The car quietly landed in the hands of Nissan engineers Steve Mitchell and Mike Kojima.


The Sentra was painted a unique combination of psychedelic, color-shifting brownish paint and was thus dubbed the Disco Potato.
Jim Wolf Technology built a very mild SR20 for the Sentra, making it functionally equivalent to a stock Japanese-spec SR20DET. The turbo was installed, and amazing things started happening. The car's power was impressive, 280 hp at the wheels, but not earth-shattering. The driving experience however, was. Throttle response was excellent, turbo lag virtually non-existent, and the tire-shredding power was easily modulated. The turbo spooled up early, making so much torque, that the best quarter-mile time (13.7 at 104.5 mph) was achieved launching in second gear.
Mitchell brought the Disco Potato to the Ultimate Street Car Challenge in 2001, and placed an impressive fourth overall. The rest of the time, the car was stashed away in Nissan USA's service garage and used strategically as an attitude adjustment tool. Whenever Nissan or Garret executives needed an injection of gasoline in their veins, they were offered the keys. They would inevitably come back grinning from ear to ear and breathing heavily, eager to bring horsepower to the masses.
During one such outing, which included a 1,000-mile road trip as well as a track day at Thunderhill Raceway, the fwd Disco Potato outran every car at the track and then blasted down the freeway at 140 mph. Several Garrett executives also experienced the Potato. They were so impressed, they decided to produce the turbo, double the engineering staff in the aftermarket department, and start applying this modern Garrett technology to a whole range of aftermarket turbos. End of story.
Did you like the story? I sure did. A lot of people find the Disco Potato turbocharger as a very fun turbo to drive. And here is a little video of a Honda Civic B16 fitted with a GT2860RS turbocharger. I might add that this 1.6 liter engine drives and spools the GT28RS Disco Potato quite well.
Video text:
This car now has a third setup. First setup was a b16a2 N/A, second - b16a2 turbo, but burst slevees and now I will gave him a new life with the next engine, he has forged pistons and connecting rods. I'm using a turbocharger Garrett GT28RS (Disco Potato), what generating power 328,3HP and 323,3Nm with the 1bar of boost (14,5PSI).
You might want to fit this turbocharger to you're own car perhaps. Well sometimes there are a few problems, especially when using the existing turbo manifold.
Because most standard cars don't come with a turbo this big from the factory, you start to run into clearance problems.

I also have more technical pages for you that will come in handy. They will be of great help when looking at compressor maps Use the conversion tools And you will be able to calculate airflow, pressure and HP figures for the turbocharger you are interested in.