turbocharger, turbochargers, garrett Garrett, GT06, GT0636SZ, Turbocharger Garrett, GT12, GT1241, Turbocharger Garrett, GT15, GT1544, Turbocharger Garrett, GT15, GT1548, Turbocharger Garrett, GT20, GT12052, Turbocharger Garrett, GT20, GT2056, Turbocharger Garrett, GT22, GT2252, Turbocharger Garrett, GT22, GT2259, Turbocharger Garrett, GT25, GT2554R, Turbocharger Garrett, GT28, GT2854R, Turbocharger Garrett, GT28, GT2859R, Turbocharger Garrett, GT28, GT2860RS, Turbocharger, Disco Potato

Monday, March 28, 2011

Garrett GT28R - GT2859R - 56 TRIM - 310 HP


This is the Garrett GT2859R turbocharger. This turbo is common in twin turbo applications. And is also an upgrade turbocharger for the Nissan RB26DETT engines used in the Nissan Skyline R34 GT-R. The Garrett GT2859R is a direct replacement upgrade turbocharger for the stock OEM Nissan RB26DETT GT2556R 702987-7 used in Nissan Skyline R34 GT-R. And is also used for upgrades for other straight 6 and V6 engines.


The Garrett GT2859R turbocharger is popular because it will allow you to use higher boost pressures. If you look at the compressor map below you can see that it will give you almost 2 bars of boost. On the compressor map you actually read 3 bar on pressure ratio. That's because we already live in an 1 bar environment. So the total pressure seen on the map is 1 bar + the 2 bars that the turbo will give.
If we look at where in the compressor map the GT2859R turbocharger flows the best we see that it's in the 1 - 1.5 bar boost range. This makes the GT2859R a very popular choice for twin turbo applications because you will get a solid 550 HP with them working together. And because it's a T25 flage turbo it will bolt up right away to you're existing manifold if you are looking for an upgrade.

The GT2859R alone will work well all the way down to 150 HP and will give you 310 HP if needed. The recommended engine sizes for the GT2859R turbocharger are 1800cc to 3000cc.

Model: 707160-9 (with wastegate actuator) and 780371-1 (without wastegate actuator)
CHRA: 446179-65

Bearing: Ball bearing
Cooling: Oil & Water cooled bearings
Compressor
Inducer: 44.5 mm
Exducer: 59.4 mm
Trim: 56
A/R 0.42

Turbine
Wheel: 53.9 mm
Trim: 62
A/R: 0.64
Wastegated
Turbine Flange: T25
Turbine outlet: Unique "compact" 5-bolt pattern 

Turbine Housing Options
Part Number: 430609-230
A/R: 0.64
Wastegated

Part Number: 430609-231
A/R: 0.86
Wastegated

Now if you look at the dimensions of the turbine you might notice it's identical to the Garrett GT2554R and GT2854R turbocharger. And it almost is, but you will get more turbine housing options with the GT2859R. Also the turbine outlet flange have a unique compact design to it, so it will not work with the other GT25R flanges or other traditional T25 5-bolt flanges. So an special downpipe flage is needed.


The GT2859R Turbine housing is also cast from high-nickel "Ni-Resist" material for extreme applications. And the turbine wheel is cast from "Inconel" so it will take alot of heat and abuse. Also it has the T25 turbine inlet flange with threaded bolt holes instead of traditional through holes.





Click for bigger pictures.

The GT2859R use the Standard T25 oil drain flange.
Oil inlet 0.4375IN - 24 Thread for 6.35 Tube Inverted flare connection PER SEA J512 Oil inlet
Oil outlet 2 x M8x1.25 13.5 oil outlet
Water connections thread M14x1.50





I also have more technical pages for you that will come in handy. They will be of great help when looking at compressor maps Use the conversion tools And you will be able to calculate airflow, pressure and HP figures for the turbocharger you are interested in.

Garrett GT28R - GT2854R - 60 TRIM - 270 HP


The Garrett GT2854R Turbocharger is the smallest Garrett turbo in the GT28 Family. The GT2854R looks similar to the GT2554R also because they are very similar turbos and share almost all parts. The only difference between the GT2854R and GT2554R is that the GT2854R has a larger turbine housing and a different turbine wheel.

The GT2554R turbine wheel have 11 blades with a 53 mm major diameter. If you look close at the picture below you can count 11 blades on the turbine wheel.



And the GT2854R have a 9 blade 53.9 mm turbine wheel. If you look at the picture above, you can count 9 blades on the turbine wheel. This all means that the GT2854R turbocharger will give you a little bit of extra power at high RPM's because it will flow a bit more on the exhaust side. The spool will be a little bit later on the GT2854R but not much. The GT2854R turbine housing is also cast from high-nickel "Ni-Resist" material for extreme applications.


Like the GT2554R turbocharger. The Garrett GT2854R turbo will give you 270 HP. It works well with 1400cc to 2200cc engines and will also be a good turbo if you only are looking for 170 HP. It will spool up pretty quick because of ball bearings used in the turbocharger.


Model: 471171-9
CHRA: 446179-47 


Bearing: Ball bearing
Cooling: Oil & Water cooled bearings

Compressor
Inducer: 42.1 mm
Exducer: 54.3 mm
Trim: 60
A/R 0.80

Turbine 


Because the Garrett GT2854R turbocharger share almost all the same parts as the Garrett GT2554R turbo. Means the oil and water threads are the same for both of them.

Oil inlet 0.4375IN - 24 Thread for 6.35 Tube Inverted flare connection PER SEA J512 Oil inlet
Oil outlet 2 x M8x1.25 13.5 oil outlet 

Water connections thread M14x1.50



I also have more technical pages for you that will come in handy. They will be of great help when looking at compressor maps Use the conversion tools And you will be able to calculate airflow, pressure and HP figures for the turbocharger you are interested in.

Thursday, March 17, 2011

Garrett GT25R - GT2560R - 60 TRIM - 330 HP


This is the Garrett GT2560R also called GT28R sometimes. This is the biggest turbocharger of the GT25 family of turbos. Like the smaller GT2554R turbocharger this one is also a ball bearing turbo.
The Garrett GT2560R turbocharger is also found on some engines from stock like the Nissan SR20DET engine, that's in the newer Nissan 200sx S14 Silvia models or 240sx. 


The Garrett GT2560R turbocharger is also a popular choise for people who are looking for an turbo upgrade. Also there are many aftermarket turbocharger kits that have this turbo. This turbocharger can give you up to 330 HP and works well if you are looking for 200 HP. The engine size recommended for this turbo is between 1600cc to 2500cc.


New Part Number: 836023-5004S 
New CHRA: 835995-0003

Plsease note Garrett have changed the part numbers for the GT2560R Turbocharger. The turbocharger is still exactly the same and only the part numbers have changed.

OLD Model Part Numbers: 466541-1 and 466541- 4
OLD CHRA: 446179-12

Bearing: Dual Ball Bearing
Cooling: Oil & Water
Compressor
Inducer: 46.5 mm
Exducer: 60.1 mm
Trim: 60
A/R 0.60


Turbine
T25 Flange
Wheel: 53.0 mm
Trim: 62
A/R: 0.64
Wastegated
OEM Turbo for Nissan SR20DET engine



Garrett have two GT2560R turbochargers, the more common that have the 466541 - 1 number and then the other turbocharger with the 466541- 4 number. The 466541-4 GT2560R turbocharger is the same as the other but is made for more extreme applications.


The GT2560R 466541-4 turbocharger have it's turbine housing cast from high-nickel "Ni-Resist" material. And the turbine wheel is cast from "Inconel" material. This means that the 466541-4 turbocharger can take more extreme heat and abuse, than the more common 466541-1 GT2560R turbo.



Click on the images to get bigger size.

Oil inlet 0.4375IN - 24 Thread for 6.35 TubeInverted flare connectionPER SEA J512 Oil inlet

Oil outlet 2 x M8x1.25 13.5 oil outlet
Water connections thread M14x1.50



I also have more technical pages for you that will come in handy. They will be of great help when looking at compressor maps Use the conversion tools And you will be able to calculate airflow, pressure and HP figures for the turbocharger you are interested in.

Friday, March 4, 2011

Garrett GT25R - GT2554R - 60 TRIM - 270 HP


The Garrett GT25R or GT2554R turbocharger is the smallest Garrett GT turbo that have Dual Ball Bearings. This GT turbocharger is a popular choice because of that. The GT2554R turbo is internally wastgated also so there is no need for you to put out extra money on the fabrication of manifolds for an external wastegate setup. The turbo exhaust flange for the GT25 have the common T25 flage so it's a very easy job to bolt it on to you're existing stock manifold. This means the GT25 turbocharger is a great upgrade for many cars originally equipped with T25 & T28 Turbos. This includes cars like the 300ZX & SR20DET 240SX and many more.


The dual ball bearing GT25 will give you a very quick spool, even on a very small engine. And also give you a solid 200 WHP power figure without even breaking a sweat.

The Garrett GT25 turbocharger will work well for engines between 1400cc and 2200cc and will give you 270 HP in the engine. And that means you still have well over 200 WHP left at the wheels. The GT2554R will work well also if you are looking for 170 HP.

Model: 471171-3
CHRA: 446179-24


Bearing: Ball
Cooling: Oil & Water
Compressor
Inducer: 42.1 mm
Exducer: 54.3 mm
Trim: 60
A/R 0.80


Turbine
Wheel: 53.0 mm
Trim: 62
A/R: 0.64 
Wastegated






The other good thing about the Garrett GT2554R turbocharger is that it's both oil and water cooled.

Oil inlet 0.4375IN - 24 Thread for 6.35 Tube
Inverted flare connection
PER SEA J512 Oil inlet

Oil outlet 2 x M8x1.25
13.5 oil outlet

Water connections thread M14x1.50


Short Specs about this car.
1994 Mazda Miata
'99 longblock with GT2554R turbo
225/45-15 Nitto NT-01s on 15x9 949Racing 6ULs
217whp/192wtq
2100lbs w/o driver
weight in video approx 2530lbs (2 people + gas)


You can see here that the Garrett GT25R turbocharger works very well for the small engine Mazda Miata. And with the 217 WHP and some good racing tires on have no problem holding it's own on the track.





Service Kit
Component
Quantity
Item
Journal bearing
1
1

Retaining ring, jnl/brg
1
2
Pin, anti-rotation, jnl/brg
1
3
Piston ring, t/end
1
4
Thrust bearing
1
5
Bolt, seal plate/th brg
4
6
Thrust spacer
1
7
Piston ring, c/end
1
8
O ring, seal plate/brg hsg
1
9
Thrust collar
1
10
Locknut/shaft111
O ring, c/hsg112
Bolt, c/end613
Bolt, t/end 4 16



I also have more technical pages for you that will come in handy. They will be of great help when looking at compressor maps Use the conversion tools And you will be able to calculate airflow, pressure and HP figures for the turbocharger you are interested in.

Folks don't forget about racing safety gear when buying auto racing parts

I have been tuning engines for a long time and with that experience I tend to look a bit more at how other people tune their cars and bikes than anyone else. Now this is not true for everyone, but most of you will recognize yourself at some level.

About 25 years ago the level of tuning an ordinary street car would ever see was at most 30% increase in power. (Not true for every car out there, but I'm talking ordinary street cars here)

So if you had an Ford, Volvo or BMW the amount of power you could get would have been in the 150hp range and in some extreme cases 250hp. At this point this was the "limit" of ordinary naturally aspirated engines at that time. Yes there was a lot of racing going on at that time, and some of these race engines did get put into street cars and power levels would have been 300+ hp. But the amount of maintenance these race engines required and the cost to keep them running were too much for most people.

Back then you could not just go into a racing store and buy yourself a set of forged pistons and connecting rods. Let alone camshafts and valves to build your race engine.

With the introduction of turbochargers however the power suddenly increased to levels that are still uncommon in today’s cars. At the beginning people where not really sure how to tune turbo engines and intercoolers where something that most people had never heard of. Silicone hoses where did you get that?

You would have to know someone in the maintenence department that did service on trucks or busses that had turbocharged Diesel engines at the time to buy the simple things like, clamps, hoses, gaskets, oil lines etc. Even something like an external Wastegate that are availiable almost everywhere now today you could not get your hands on. And something like real drag tires where not that common either.

But as time passed by, engine tuners got their hands on more parts, most that had the machines and tools started to make their own intercoolers, wastegates and all the parts that were hard to get and the knowledge and the tuning business took of.

Now it still took some time before engine management systems and electric fuel injection where you could really start to extract power out of engines became common and figure out how to tune the software to make that work. To start if you found someone who could tune these you would have to fork out serious doe to get everything working. Well you still might have to do that today, and serious race teams do spend alot of money to get the electrical side working right. Today there are so many more things you can do with a powerful ECU, like traction control, different boost pressures for low and high gears, launch control, shiftcut etc.. This list is very long.

But before all that came chip tuning and fuel injected turbo engines. What was unheard of just 20 years ago would now become a reality for anyone with a few minutes of tuning. Some of you might know the story of the Ford RS Cosworth, Nissan Skyline, Audi S1 Quattro, Lancia S4 to name a few and other icons of the late 1980 and early 1990. The turbo engines back then would give you 200hp and that is still today 25 years on about the same power level you would get from a new car. However today this is a common power figure for a station wagon. And back in the 80s only a few racing breed turbo engines would give you that.

But with a few changes to the ECU with chip tuning and some larger fuel injectors all that was needed then was to turn up the boost pressure and 350hp where unleashed. The only real limit here was only how much air the standard turbocharger could supply.

Sure there where different levels of basic tuning you could do but the effect was the same, more power.

With more and more tuner friendly cars coming out over the years the power figures are still holding almost the same. Just until recently where the powerfigures have really started to go up and beyond what was thought possible only a few years ago..

But what have really changed today is the huge amount of DIY tuners out there. What engine tuners did 25 years ago have now entered the garage and racing parts have now become widely available to anyone. From the cheap Chinese made turbo exhaust manifolds to wastegates and almost every tuning part you can think of to the pure racing parts like forged pistons and engine management systems on sale that anyone can buy.

So what has happened is anyone with a little background in mechanics can now build their own race engine. Power levels have just gone up and up and up.. It’s not uncommon to see street cars today with 500hp and then there are the ones who have gone even higher, breaking the 1000hp barrier.

The one thing that all these engines have in common to achieve such power levels are of course the turbocharger. Without the turbo it would not have been possible. Well a supercharger or N02 injection could do the job too but that’s another story.

However time and time again people forget the most important parts when tuning cars. I’m talking about safety and racing safety gear. I do see that people buy racing seats and that’s good. But most of the time they don’t buy racing seats because of the added safety. It’s because they think racing seats look good. And what about things like auto racing helmets that keeps your head intact. Most of the time people come to the track without real racing helmets and if it’s street racing that’s taking place, no one seems to bother wearing any kind of racing helmets at all.

I do understand that people feel protected inside their cars and they don’t think they need roll cages and in some cases opt for roll bars instead but you really need to think about this.

Some of the racing safety gear you should look at are the following:
racing suit
racing shoes
racing helmets
racing gloves

This would be the minimum for my liking if your going on a trackday or similar race day event with your tuned car.

In case you don’t have a fuel cell in your car and there is a chance of fire or fuel leak then you should consider racing fire suits also because these will save your life.

Fire is not to be taken lightly. If you have a good fuel system in place to feed your engine and anyone who are looking for power is going to have that. Then you need to understand that at any given time those racing fuel pumps are pumping 2 gallons of fuel every minute. And if you get a leak and have an accident you are in real trouble if the power to the pumps are not cut right away.

So having the right racing safety gear to protect you is always a good choice. Today’s car are much safer than the ones years ago, but you need to understand that when we double and triple the amount of power and turn our 100mph car into a 200mph fire spitting monster of a car you really, really should spend some time and pick out some racing safety gear also.